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Abstract

A rehabilitation therapy usually derives from general
goals set by the medical expert, who requests the pa-
tient to attend sessions during a certain time period in
order to help him regaining mobility, strength and/or
flexibility. The therapist must transform these general
goals manually into a set of exercises distributed over
different rehabilitation sessions that compose the com-
plete therapy plan, taking into account the patient clin-
ical conditions and a predetermined session and ther-
apy time. This becomes a hard task and might lead to
rigid schedules which not always accomplish the de-
sired achievement level of therapeutic objectives estab-
lished by the physician and could have a negative im-
pact on the patients’ engagement in the therapy. In this
paper we present a method based on Automated Plan-
ning for the automatic generation of therapy plans for
patients suffering obstetric braquial plexus palsy, in re-
sponse to a given set of therapy goals. The ultimate pur-
pose is to project the therapy plans to robots that can
help patients achieving a better performance, showing
them how to do exercises properly.

Introduction

Clinical Decision Support Systems (CDSS) have been de-
veloped in the last decades to facilitate many tasks of physi-
cians, like helping them in implementing Clinical Practice
Guidelines (CPGs) through ad-hoc computer-interpretable
models (Peleg 2013). In some cases, it might happen that
the protocol to treat a patient condition is not so clear, and
that the procedure to design the treatment pathway depends
directly of a set of expected therapeutic objectives that the
patient should achieve. In this case, guidelines can only give
high-level recommendations on what combination of thera-
pies to establish for a patient condition, but it still may re-
quire high complexity for the physician to deal with the con-
figuration of the most appropriate combination of steps to
maximize the expected outcome, for example according to a
standard scale. This is the case of rehabilitation therapies for
obstetric braquial plexus palsy (OBPP), the condition where
this paper is scoped. OBPP is a serious injury that causes a
loss of movement or weakness of the affected upper-limb. It
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is produced when the collection of nerves around the shoul-
der are damaged during the birth. This kind of complica-
tion has been reduced due to the improvements of the birth
process but still about 1,5 of every 1.000 live births present
this injury and require physical therapy. In order to design
the OBPP rehabilitation stage in the Virgen del Rocio Uni-
versity Hospital (Seville, Spain)!, a set of therapeutic ob-
jectives is established after the anamnesis stage, according
to the evaluated conditions of the patient. Taking these ob-
jectives into consideration, sequential, time-limited sessions
of exercises that aim to achieve those goals have to be de-
signed by the medical experts. The patients will carry out
the rehabilitation sessions, and some intermediate evalua-
tion will be done to check if the patients are progressing
and achieving the expected outcome, according to the Goal
Attainment Scale (GAS) (Turner-Stokes 2009). In this sce-
nario, physicians need to design combinations of exercises
that contribute in a quantitatively measureable way to one
or several therapeutic objectives, that might conflict among
them, and that might have time, order, intensity or difficulty
constraints in order to be selected.

This paper proposes to model the design of rehabilita-
tion therapies by means of Automated Planning, which pro-
vides an automatic method to support physicians in the de-
sign of these sessions. After their clinical feasibility vali-
dation, the therapeutic plan could be projected into a pro-
grammable humanoid robotic platform that will serve as
training assistant to patients, as expected in the THERA-
PIST project (Calderita et al. 2013). To achieve this goal,
three main steps have been performed and described in this
manuscript. Firstly, a domain analysis and specification have
been performed with the help of physicians and therapists at
Virgen del Rocio Hospital in Seville, as described in the fol-
lowing section. Then, we have studied how to formalize the
domain with two different automated planning approaches:
classical STRIPS planning and Hierarchical Task Network
(HTN) Planning (Ghallab, Nau, and Traverso 2004; Erol,
Hendler, and Nau 1994). Finally, we have performed an ini-
tial empirical, qualitative evaluation of such models with
different planners to check their capabilities, including an
extended discussion to highlight their strengths and weak-
nesses.
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Domain Analysis and Specification

There are three main actors involved in the therapeutic pro-
tocol: the therapist, the medical expert and the patient. The
therapy plan is composed of sessions, each one composed of
different exercises. The medical expert determines the num-
ber of sessions of the therapy and some constraints to pre-
vent the training of certain groups of exercises depending on
the patient profile. This expert also decides which general
therapeutic objectives, out of five, should be trained during a
rehabilitation therapy: bimanual, fine unimanual, coarse uni-
manual activities, arm positioning or hand positioning activ-
ities.

The main goal of the therapist is to help the patient to per-
form the rehabilitation sessions while evaluating the patient
evolution. When planning a therapy session, the therapist se-
lects the exercises which, according to his experience, are
better to fulfill the therapeutic objectives in a fixed amount
of time. The hospital that participates in our project follows
general guidelines of the available exercises categorized ac-
cording to affected body sites, hence each group trains a cer-
tain aspect of a therapeutic objective. The therapist is also
free to use his creativity to improvise new exercises in or-
der to better accomplish the goals imposed by the medical
expert. A reasonable session might be organized as follows:
the initial exercises serve as warming up, the most intense
exercises are performed in the central part of the session and
the final exercises as cooling down.

The evolution of the patient is evaluated using the GAS
scale (Turner-Stokes 2009). Depending on the results, the
medical expert can change some therapy features, for exam-
ple removing a therapeutic objective or adding another one.
This system has little flexibility because it does not allow
to reduce or increase the priority of the objectives by some
degree. The selected exercises in a session depend greatly
in the intuition of the therapist. These exercises could not
be the most appropriate to achieve the therapeutic objectives
and, at the end of the therapy, some of these objectives could
not be completely fulfilled, putting at risk the rehabilitation
success.

Having different exercises for each therapeutic objective
is convenient because using an assorted exercise set may en-
rich the therapy quality. However, selecting the adequate ex-
ercises for the therapeutic objectives, observing the patient
profile constraints and the general characteristics of each
therapy session, is a difficult and time-consuming search
task. For these reasons, the sessions are usually repetitive,
using just a small set of performed exercises. This may cause
a reduction of the patient’s engagement in the therapy.

Model, Constraints and Requirements

Finding a plan of exercises for each session while taking
into account all the requirements set by the medical expert
is a difficult search problem that can be solved with Auto-
mated Planning. A database with exercises of different char-
acteristics is available for the system to be developed. This
database provides metrics to guarantee that the planned ther-
apy fulfills all the requirements of the medical expert. To in-
crease the flexibility when selecting exercises, the terapeutic

objectives variables are graded with four adequacy values,
{0,1,2,3}, as used in the GAS scale. These values will con-
tribute to reach the therapeutic objectives cumulative levels
(TOCL) established for a session. The system will provide
the planned sessions to the therapist, that only need to vali-
date or change any exercise considered as not appropriate.

In the following we show the constraints and requirements
followed to plan the exercises that will be included in the
rehabilitation sessions.

Goals

e Total number of sessions.
e Minimum and maximum duration of each session.
o A target level for each therapeutic objective.

Exercise characteristics

e Duration (in minutes).

e Adequacy level for each therapeutic objective.

o Intensity value associated to the average hearth rate while
performing the exercise.

e Difficulty for a certain patient to perform the exercise.
This variable could be updated by the therapist after each
session, if needed.

e Each exercise belongs to a group of exercises. These
groups are related to the capabilities that patients need to
perform the exercise, possibly restricted by their clinical
conditions.

In order to preserve the medical pursued requirements and
sessions’ variability, the next constraints are considered.

Basic constraints

e Each session must have three phases in the following or-
der: warm-up, training and cool-down.

e The duration of each phase and each session must be in-
side a predefined range.

Variability constraints

e The repetition of a certain exercise in the same session is
not allowed.

e The exercise distribution should be assorted throughout
the sessions.

Patient-related constraints

e Avoiding a certain group of exercises or a certain exer-
cise (e.g. too much intense or difficult) could be required
because of patient conditions.

e Select certain types of exercises (e.g. if the patient suffers
”Upper Erb OBPP”, recommend only exercises for shoul-
der abduction, external rotation of shoulder and elbow
flexion; if he suffers "Extended Erb OBPP”, add wrist
flexion as well.

e Within a session, limit the cumulative intensity or diffi-
culty to a given value.

With this information, the automated planner can find a
suitable therapy plan if there are enough exercises in the
database. In case that the available exercises are not enough,
the automated planner will ask the therapist that it needs
learning a new exercise with a suggested value for some
characteristics. For example, in a session plan, the planner



can suggest the execution (and learning) of a new exercise
with a minimum adequation level of 2 for bimanual activ-
ities. The planner assumes that the learnt exercise is per-
formed by the patient and uses the minimum estimated val-
ues to compute the calculations for the plan. When the thera-
pist saves the new exercise in the database, it can have higher
adequation levels for the therapeutic objectives, guarantee-
ing that the plan will continue being valid. In future sessions,
the previously learnt exercises can be reused, minimizing the
need of further learning actions and helping the therapist to
fill the database with a set of useful exercises. After a ses-
sion, the therapist can update the difficulty values of the ex-
ercises for a patient, if needed. The medical expert can also
modify the goals with the results of the GAS scale evalua-
tion. This updates can cause a replanning of the remaining
sessions, if the previously planned therapy is no longer valid.

Methods

We propose the use of Automated Planning techniques
(Ghallab, Nau, and Traverso 2004) to plan the exercises
that will belong to each session. Automated Planning is an
Artificial Intelligence (AI) technique that is used to find
a plan of actions while respecting the model constraints.
We have tested two different paradigms: classical planning
and Hierarchical Task Network (HTN) planning. In clas-
sical planning, given a model composed of a initial state,
possible actions that have preconditions that need to be ful-
filled and effects over the state, and a set of goals that
have to be accomplished in the final state, a planner is
able to generate valid plans of actions to achieve the goals
specified. In HTN Planning (Erol, Hendler, and Nau 1994;
Nau et al. 2003) a hierarchy of composed tasks and primitive
actions exist. Composed tasks are high-level tasks that can
be decomposed using methods that have to fulfill a precon-
dition to be selected and applied, while primitive actions are
modeled as in classical planning.

In order to check the viability and to measure the ap-
propriateness and performance of each automated planning
paradigm, two different knowledge engineers of our group
addressed the presented problem using two concrete Al
planners: CBP (Garcia-Olaya, Jiménez, and Linares Lopez
2011) for the classical paradigm and JSHOP2 (Nau et al.
2003) for the hierarchical one. Subsequent meetings with
other group experts were carried out to discuss modelling
approaches and results. We describe next these two models.

Classical Planning

The proposed domain for this planning model is based
mainly in fluents and action costs, introduced in PDDL
2.1 (Fox and Long 2003). These requirements have yet a
lack of support from many of the most current planners, but
in this domain they are specially useful to operate directly
with the quantitative values of the therapeutic objectives.
Also, they are useful to control the session length, add spe-
cific variability restrictions and to establish a dynamic pref-
erence of certain actions. The most important design crite-
rion that we followed in the classical model is that each indi-
vidual session has to fulfill always the therapeutic objectives

while observing basic time constrains. A secondary criterion
consists in forcing the variability among the therapy sessions
to avoid monotony and get a much more integral training.
This domain also has the possibility to “plan the learning”
of new exercises with some suggested attributes to be exe-
cuted in a session if there are not enough exercises in the
database. This learning mechanism is explained in more de-
tail in a later subsection. To clarify the further explanation,
below we show a plan for just one session. A full therapy
plan will have every session planned, addressing all the de-
pendencies among them.

(SESSION-START)
(WARMUP-PHASE)
(WARMUP-DATABASE-EXERCISE EO)
(TRAINING-PHASE)
(TRAINING-DATABASE-EXERCISE E11)
(TRAINING-DATABASE-EXERCISE E12)
(TRAINING-DATABASE-EXERCISE E10)
(TRAINING-DATABASE-EXERCISE E9)
(LEARN-TRAINING-EXERCISE O_SPATIAL_HAND A_MEDIUM
D_LONG I_INTENSE)

9: (COOLDOWN-PHASE)
10: (COOLDOWN-DATABASE-EXERCISE E15)
11: (SESSION-END)
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Planning Problem

Goals The medical expert is in charge of determining the
characteristics of the therapy. Firstly, he decides the total
number of sessions and the minimum and maximum dura-
tions of each phase. This data is stored in the initialization
part of the PDDL problem to serve as a common background
for all sessions. There are other two important tasks for this
expert: choose restrictions depending on the patient’s profile
and determine the amount of training for each therapeutic
objective in each session. These are done using PDDL goals.

There is a fluent for each therapeutic objective to accu-
mulate all the corresponding adequacy values of the planned
exercises in a session. These can be defined as the amount
of training for a certain therapeutic objective (the aforemen-
tioned TOCL values). An objective will be achieved if it is
trained enough, so it is sufficient to assign a goal with a
lower threshold for each objective to be trained. As an ex-
ample, for a 30 minutes session:

(>= (TOCL t_bimanual) 15)
(>= (TOCL t_unimanual_fine) 7)
(>= (TOCL t_spatial_arm) 7)

Numeric goals in PDDL permit a great flexibility to con-
figure the range of desired values for each fluent at the end
of each session. It could be also possible to establish an up-
per limit for each objective (less or equal condition) or even
avoid the training of a certain objective (equals to zero), but
this has less medical sense because these values are just a
form to represent the priority of the therapeutic objectives
and do not need to be directly related with the exercises in-
tensity, for which there is a different fluent.

In a similar way, the exercise intensity and difficulty have
been modelled with fluents and can be limited for each indi-
vidual exercise or using a cumulative value for each session.
A goal with a standard STRIPS predicate can be used to
avoid a certain exercise group.

Exercise Database The database contains all the stored
exercises. It is fully managed by the therapist, adding ex-
ercises when the system suggests it with learning actions or



when the therapist finds it convenient. This information ob-
serves all the characteristics of the exercises mentioned in
previous sections. The difficulty value of each exercise is
stored in the patient’s profile, but to simplify we consider
that they are loaded in the PDDL problem file before the
planning task. To assure the variability constraints, there are
two additional fluents representing the session number and
the position of the exercise in the the last session where it
appeared. Each exercise has a predicate to be able to appear
in the warm-up, training or cool-down phase.

The system assumes that the information of the database
is coherent, so the therapist has to be sure that the exer-
cises are correct when he adds them. For example, warm-up
exercises should not be too intense. With these considera-
tions, the session plan will start with soft intensity, followed
by an intense training phase and ending with softer exer-
cises again. Below there is an example exercise modelled in
PDDL.

e_phase e7 p_training)

e_group e7 g_arm_independence)
(e_last_session e7) 2)
(e_last_position e7) 4)
(e_intensity e7) 48)

(e_difficulty e7) 39)

(e_duration e7) 4)

(e_adequacy e7 t_bimanual) 0)
(e_adequacy e7 t_unimanual_fine) 3)
(e_adequacy e7 t_unimanual_coarse) 0)
(e_adequacy e7 t_spatial_arm) 1)
(e_adequacy e7 t_spatial_hand) 0)

Planning Domain

Actions All actions are strongly based in fluents, having
numeric preconditions and action costs. There are two stan-
dard action types: to control the session flow and to add ex-
ercises.

Flow control actions allow moving among warming up,
training and cooling down phases or determining the start
and end of a session. If the minimum time for a phase has
been reached, it is possible to move to the next phase or to
finish the session.

The basic way to add exercises to a session is through ac-
tions which select them from the database. They check that
there is available time in the current phase and constraints
like the maximum cumulative intensity. Only exercises for
the current phase can be selected. To assure variability there
are two hardcoded restrictions:

e The exercise could not be used in the last three sessions.

o In the training phase, an exercise cannot be trained in the
same position as in the last session in which it appeared.’

Learning new exercises

Learning actions helps the therapist to add new useful ex-
ercises to the database as the system is being used. When
the planner has difficulties to find a valid plan, it can ask the
therapist to teach him a new exercise which execution allows
to continue planning. Our hypothesis states that the bigger
the database is, the less new learnings will be needed. It is

2For warm-up and cool-down phases the condition is not appli-
cable because long exercises can exist reaching by themselves the
minimum time of the phase and cannot be reordered (in warm-up
phase, they will always appear in the first position).

preferable to use exercises in the database instead of learn-
ing new ones, but is not necessary to explore all the pos-
sible combinations before trying a learning action. This has
been controlled using a higher action cost, as a soft goal. The
planner tries to minimize the total cost of the plan, so these
actions tend to be used few times. The planned learning ac-
tion has several parameters, as can be seen in the example
plan of a session. When one of these actions is used, the
planner selects a value for each parameter, having a direct
effect on the action cost. The first two (main therapeutic ob-
jective and its minimum adequation level) guide the learning
to accomplish an unreached goal. The other two parameters
are duration and intensity. It is important to highlight that
these parameters values are just estimations. The therapist
has to be sure that the adequation value of the therapeutic
objective pointed by the planner is over the minimum. This
way, the therapy plan will continue being valid for the thera-
peutic objectives. The therapist also has to take into account
the suggested duration and intensity, but light variations are
acceptable.

To increase variability, the action cost will be higher when
the exercise allows to reach the problem goals faster. In other
words, exercises longer and less adequate for the main target
are preferred.

Planning Strategy

Classical planning has to deal with a major problem in this
domain. Plan only one session is somewhat relatively easy,
but a real therapy is composed of about 20 sessions. The first
approximation was to plan the full therapy, generating plans
which contain more than 250 actions. Planning multiple ses-
sions in one run causes a non-linear complexity increase be-
cause there are dependencies among them. The planner has
to do backtracking if the selected exercises for a session are
not valid. The problem appears when the planner goes back
further than needed, maybe many valid sessions, forcing to
replan these sessions again to find a valid alternative for a
later one. A smaller backtracking of just a few actions could
solve the situation allowing reordering of the exercises, se-
lecting others or planning the learning of a new one to con-
tinue onward.

Our divide and conquer strategy consists in planning each
session individually taking into account the dependencies of
one another. In particular, the planner is called one time for
each session that we want to plan. Each time that the planner
returns a plan, it is parsed to determine all the database and
learnt exercises planned. For the next session, a new problem
file is generated to update the predicates and functions of the
exercises of the last session, and add the new learnt exercises
to the database. Then, the planner is executed again with
the problem file for the next session. So for each session, a
PDDL problem file is generated with the new exercises and
updates to the database exercises. The experiments showed
that this strategy is much faster than planning all the sessions
in one run, without affecting the quality of the plans. The
capacity to learn new exercises gives to the sessions some
locality properties that can be exploited to avoid the time-
consuming backtracking among sessions.



Planned exercises ———p
0 1 2 3 4 5 6 7
e0 e9 ell el2 el0 e7 el5

e4 e2 e5 eb L L L el3
el e3 e8 L L L L el6
L L L L L L el?7

e0 ell el2 el0 e9 L el5

e4 e2 eb L19 e7 e5 L20 el3
el e3 L24 e8 L23 L22 el6

L25 L26 L30 L27 L28 L29 el7

e0 el2 el0 L31 ell e9 el5

e4 e2 L19 L20 e6 e7 el3

10 el e3 L22 L23 L24 e8 elé

11 L L25 L26 L29 L30 L27 L28 el7
12 e0 el0 L21 el2 e9 ell el5

13 e4 e2 e7 eb L20 L19 el3

14 el e3 L24 e8 L22 L23 elé

15 L25 L27 L31 L26 e5 L29 L30 el7
16 e0 ell el2 L28 el0 e9 el5

17 L32 el e2 L19 e6 L20 e7 el3
18 el e3 L22 L23 L24 e8 el6

19 L25 L26 e5 L29 L30 el7

4——Sessions
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Table 1: Therapy plan with few exercises in the database.
An “e” or “L” with a number represents an exercise stored
in the database (initial or learnt, respectively). A single “L”
represents the learning and execution of a new exercise.

Empirical Evaluation

We used the CBP automated planner (Garcia-Olaya,
Jiménez, and Linares Lépez 2011) because it was specially
designed to work with action costs, so its heuristics reduce
the total number of new learnings. In Table 1 there is an
example of a therapy with 20 sessions. The database starts
with a controlled set of exercises: 5 warm-up, 8 training and
5 cool-down exercises.

In session O, the planner only uses exercises from the
database because they are useful to reach the TOCL thresh-
olds. In sessions 1 and 2, it needs to learn due to variability
constraints. In session 3, almost all the exercises has been
used in the last three sessions, so it has to continue learning
new ones. In session 4, the planner can use the set of exer-
cises of session 0 again, but it varies the order of the training
phase because the exercises cannot appear in the same po-
sition as the last time. In the following sessions, the learnt
exercises are reused because they continue being useful to
fulfill the goals, so more learning actions are not needed.
Note that the sessions are very different among them.

The new learnings in session 4 and 11 show that learning
actions are not completely prohibited, so it is not needed to
explore all the combinations in the database before using a
learning action. Also, we only use the first plan returned by
CBP. This planner can improve the plans iteratively if it has
time, but the first plan returned by CBP is good enough to
see how the system works. With this configuration, the plan-
ning time usually does not take more than five minutes. In
the initial experimentation, we observed that the principal
aspects that increase planning time are the number of learn-
ings needed and the TOCL thresholds.

HTN Planning

The automatic generation of therapies is a problem that can
be managed in a hierarchical way, where the top of the pyra-
mid contain a task representing the whole therapy, which is
divided into sessions and each session comprises a set of ex-
ercises, as shown in Figure 1. The session structure is given
by the hierarchical and order relationships represented in the
HTN decomposition. This approach aims to provide a model
more easily extendible and configurable, where human ex-
pert knowledge can be included at any time.

new
therapy

generate-therapy

generate-session

|

|

generate-exercises

|

| fill-warmup-exercises I | fill-training-exercises I |fi|l-cooldown-exercises I

learn
exercise

Figure 1: Hierarchical Task Network model schema

Planning Problem

Goals As shown in Figure 1, the goal of the Hierarchical
Task Network is the root level of the tree (generate-therapy).
This general task comprise three arguments: number of ses-
sions to plan, duration interval for each session and patient
identifier. This task can be refined using the HTN decompo-
sition methods until a set of primitive actions complete the
plan, which should reach the TOCLs. These TOCLs are also
modelled as numeric predicates in the problem description.
Furthermore, with the aim to parametrize the search (time
and possible exercises in a phase or session), a set of predi-
cates is also included.

Exercise Database The exercise database has been mod-
elled similarly to how it has been described for the classical
planning approach. The only difference is purely technical
due to the representation language of the HTN planner used
for evaluation, described later.

Planning Domain

The HTN planning domain is organized as shown in Fig-
ure 1, where a set of exercises is generated for a number
of sessions. This behaviour is modelled as a recursive task
(generate-session) which receives the current session num-
ber and the total number of sessions as parameters. This cur-
rent session number (?csn) is used as identifier by the plan-
ning domain and increased to generate new sessions.



(:method (generate-session ?csn ?tsn)

;main

((call <= ?csn ?tsn))
((!new—-session ?csn ?tsn)
(generate-exercises ?csn)
(generate-session (call + ?csn 1) ?tsn))

; stop

((call > ?csn ?tsn)
nil

Each session is divided into three phases modelled as
lower-level tasks: warm-up phase, training phase and cool-
down phase. The system must distinguish which exercises
are appropriate for each phase depending on its features, and
decides if learning a new exercise is required during plan-
ning time.

Axioms Axioms allow to infer new predicates from the
evaluation of a logical expression (abductive inference). We
have defined axioms to control the phases time intervals
and to control which exercises are more appropriate for that
phase according to the parameters specified in the planning
problem. For example, (cooldown-time) and (cooldown-
exercise) in Figure 2 are calls to axioms.

Each session begins and ends with less intense and dif-
ficult exercises, followed in the training phase with greater
intensity and difficulty exercises. The expectation for each
session (comprising three phases) is that the values of inten-
sity and difficulty follow a Gaussian distribution, as shown
later in the empirical evaluation (see Figure 3). Using ax-
ioms throughout the planning domain simplify modelling
this requirement.

Tasks and Methods Methods are used to refine compound
tasks into lower-level tasks or primitive actions. These meth-
ods have a precondition that needs to be fulfilled in order to
be applied. In our model, we have use five tasks:

1. (generate-therapy) has a unique method with empty pre-
condition that use a total-order decomposition to call the
lower-level task (generate-session).

2. (generate-session) is modelled as a recursive task that has
a method to call lower-level task (generate-exercises) and
a ’nil” method that stops when the number of sessions
required is reached.

3. (generate-exercises) has a unique method with empty pre-
condition that calls a total-ordered sequence of lower-
level tasks (one for each phase).

4. (fill-phase-exercises) are modelled with three methods.
The first one checks a) that the current time is within
the phase time interval, b) that the exercise is suitable for
the phase and c) that the exercise selected has not been
already included in the ongoing generated session plan.
Figure 2 shows a high-level description of how the (fill-
cooldown-exercises) task has been modelled. The first
method uses a “’sort-by” function that drives the planner
in the order in which the variable bindings will be evalu-
ated for the method precondition. This ”’sort-by” function
calculates an heuristic value (?ht), modelled as follows:

Nobjectives 1

Z (diz—l—l_

=1

emtimes,used) (1)
NUMsessions

htey =

where d;, for each therapeutic objective ¢, is the distance
(a minus operation) between the current cumulative level
(if the exercise would be included) to the desired TOCL
for the planned session. So, the function rewards exercises
whose contribution minimize the distance to the frontier
solution. The second fraction penalizes the number of
times an exercise has been used previously.

The second method is applied when all the possible exer-
cises have been already included in a session, so there is
no available exercises to add. In this case a new exercise
needs to be acquired (learn action) from the physician.

Exercises will be added taking into account the heuris-
tic and recursive calls to (fill-cooldown-exercises) will be
carried till the preconditions fails. In this last case, the
third method precondition is evaluated (TOCL reached
within the maximum session time specified); if it is ful-
filled, the plan is valid, otherwise the planner will do back-
tracking to check other exercise sets, until this condition
is reached.

Primitive actions We use dummy actions to delimit start
and end of sessions and therapy (see Figure 1). The action
to add an exercise updates the current session time (adding
the exercise duration) and the current cumulative level for
the therapeutic objectives in that session. It also updates the
status of the exercise (to "used”) and the counter of times
used. At the time of writing this paper, the "learn” action es-
tablishes fixed values for the exercise attributes. Improving
this behaviour is subject of future work.

; Receives the session number

(:method (fill-cooldown-exercises ?csn) laskidefinition

(:sort-by ?ht >
((e-targetl ?e ?etl)
(current-acc tl 2csn ?ctla)
(baseline tl1 ?tlbl)

Precondition 1

(assign ?dl (call - ?tlbl (call + ?etl 2?ctla)))

(assign ?hl (call / 1 (call + (call * 2dl 2d1) 1)))

Method 1

(e-used ?e ?n-used) (t-session-number ?tsn)
(assign ?ht (call - (call + ?hl ... ?h5) (call / ?n-used 2?tsn)))

(cooldown-time ?cst ?minST ?maxST)
(cooldown-exercise ?e ?minST ?maxST)
(not (used ?e ?csn))))

(('add-ex ?e cool-down)

(fill-cooldown-exercises ?csn)) Actions and task calls

Precondition 2
(forall (?e) ((exercise ?e)) (used ?e ?csn))

((!learn)) Actions and task calls

Method 2

((current-session-time ?csn ?cst) Precondition 3
(session-max-time ?csn ?maxST)
(call <= ?cst ?maxST)

(current-acc tl ?csn ?ctla) (TOCL tl ?tlbl) (call >= ?ctla ?tlbl)

Method 3

((!'finish-session ?csn))) Actions and task calls

Figure 2: JSHOP2 code for the task that aims to include a
set of exercises in the cool-down phase.

Planning Strategy

Our hypothesis states that a well modelled hierarchical rep-
resentation of the domain knowledge, along with parameters
to drive the search appropriately, could generate successful
solutions with a improved quality. In other words, we look



for a parametrized design to provide a more flexible config-
uration to the physicians. Moreover, in order to reflect the
medical criteria in the resulting plan, the heuristic function
is in charge of the exercises’ selection. As explained before,
this function is also used to penalize the most repetitive exer-
cises reducing the heuristic value, but this does not avoid the
occurrence of the same exercise throughout sessions. That
is why we consider the variability constraints as soft con-
straints.

The HTN approach can search towards reaching general
therapeutic objectives that imply interactions among ses-
sions. These interactions can occur due to a) the exercise
distribution of previous ongoing planned sessions that could
affect to future ones, b) the TOCL of subsequent sessions
can be updated by the plan of earlier sessions and c) chas-
ing possible distributions (eg. time, intensity, TOCLs) for
the whole therapy predefined by physicians. This is the mo-
tivation to propose a recursive model in order to generate
multiple sessions. The HTN approach preserves the capabil-
ity of backtracking through past sessions without mediation
of a external program.

Empirical Evaluation

We have used the SHOP2 HTN language (Nau et al. 2003)
for modelling the planning domain and JSHOP2? to test the
plan generation. The SHOP2 language is provided with a
great expressiveness that allows axiomatic inference, sym-
bolic and numerical computation, call to external programs
and use of conditional quantifiers, to name a few of its fea-
tures.

In order to evaluate the behaviour of the hierarchical do-
main, a set of 72 exercises are included in the planning prob-
lem. This experiment has been carried out with the follow-
ing configuration: 30 sessions to generate, 25-30 minutes per
session, 20% of the total session time is assigned to each
warm-up and cool-down phases and the remainder 60% is
for training phase. The established intervals to consider an
exercise as a candidate for each phase are: warm-up inten-
sity [0-30], warm-up difficulty [0-20], training intensity [30-
50], training difficulty [30-50], cool-down intensity [0-20]
and cool-down difficulty [0-30]. It is assumed that an exer-
cise could be considered as warm-up and cool-down accord-
ing to their values. The effects of the exercise distribution is
shown in the Figure 3, where the desired Gaussian distribu-
tion of the intensity and difficulty with respect the phases is
achieved.

Related Work

There has been some work in the automatic generation of
therapy plans or treatments. Ahmed et al. (Ahmed et al.
2010) present a system for the automatic generation of treat-
ments in cancer patients. The system is concerned with the
correct selection of the geometry and intensity of the irradia-
tion to produce the best dose distribution. In (Morignot et al.
2010) authors use also automated planning for generating
scenarios helping handicapped people. In (Fdez-Olivares

3it uses a planning compilation technique to synthesize domain-
dependent planners from SHOP2 domain descriptions

. alntenSit)’ -
——— ® Difficulty ,,ji

Average Exercise Set (for 30 sessions)

Figure 3: Average results for the HTN model show the de-
sired intensity/difficulty Gaussian distribution.

et al. 2011; Gonzalez-Ferrer et al. 2013) authors used a
planning algorithm capable of generating oncology treat-
ment plans, and transforming Asbru computer-interpretable
guidelines of the Hodgkin disease protocol, which include
challenging temporal constraints, difficult to schedule man-
ually by physicians. Schimmelpfeng et al. (Schimmelpfeng,
Helber, and Kasper 2012) present a mixed-integer linear pro-
gramming (MILPs) approach to determine appointments for
patients of rehab hospitals. However, they do not plan the
specific exercises within each session to achieve some pre-
determined goals, as detailed in our work.

Discussion and Conclusions

To conclude this manuscript we have created a qualitative
comparison of the two approaches that highlight the main
topics addressed. Table 2 represents a summary of this com-
parison. Some further comments are described next. Firstly,
with regard to how to achieve variability while trying to ful-
fil our requirements, we noted that the sort-by function used
in JSHOP2 needs to arrange and order many bindings before
the task decomposition is applied, which may affect perfor-
mance. This could possibly be improved by modelling the
heuristic function using a java comparator function, as of-
fered by JSHOP2. Secondly, we think that more flexibil-
ity for the user seems to be available in the HTN model,
where more complex expert knowledge could be represented
easily, however costs and preferences modelling could be
very beneficial in the case of using classical planning. Third,
using the divide-and-conquer strategy in the classical ap-
proach, new learnt exercises can be included in the following
sessions, but using the HTN approach learnt exercises can
be immediately included into the exercise set. Fourth, the
Divide-and-Conquer strategy used in the classical approach
eliminates the capability to do backtracking to previous ses-
sions, but improves its time performance. On the other hand,
the HTN model can search towards reaching general thera-
peutic objectives that imply interactions among sessions. Fi-
nally, the classical planner CBP does not use heuristics for
fluents, so in this domain the search process is very blind.
In the case of HTN, it would be interesting to explore new
preference-based planning approaches.



Constraints, Requirements Classical Planning

HTN Planning

Assuring Variability

position than in the last occurrence.

e Avoid repeating exercises in the same session.
e Avoid repeating an exercise in the last 3 sessions.
e In the training phase, an exercise cannot be trained in the same peatedly

e Avoid repeating exercises in the same session
e Heuristic sort-by function penalized for exercises that occur re-

Phase Selection PDDL predicate relating exercise to phase.

axioms limiting the exercise selection whose minimum and maxi-
mum duration, intensity and difficulty can be defined by physicians
in each phase

Phase Time Intervals
signed by the medical expert.

Minimum and maximum duration for each phase, manually as- | Time is parametrized through axioms according to accumulated

percentage of total time for each phase (eg. 0.2, 0.7, 1.0)

Learning new exercise

Suggest which attribute values should have a new learnt exercise.

It does not suggest the minimum values yet, but it is already mod-
elled as a new HTN method that can add new exercises during plan-
ning time

Achieving Goals

observing the constraints.

database.

e It is a Planner task to achieve the numeric goals established in
the planning problem, which are the TOCL thresholds, while

e Includes a metric to minimize the total cost of the plan, where
learning a new exercise has more cost than use one from the

e Total-order hierarchical network expressing the three phases.
Baseline levels and expected session time should be reached,
otherwise backtracking occurs to find a suitable exercise set

e Driving exercise selection through a sort-by function (see de-
scription above)

Planning Multiple Sessions

session.

Divide and conquer strategy which calls the planner one time per | HTN Planning is done as usual in one run, doing backtracking when

exercise sets dont reach expected goals

Table 2: Qualitative comparison of Classical and HTN approaches for the presented problem
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